
HYPERNOMAD Documentation
Release latest

Jan 12, 2022

Installation Guide

1 Prerequisites 3

2 Step by step installation of HyperNOMAD 5

3 Basic usage 7

4 Using X0 as a starting point 11

5 Using a personnal dataset 13

i

ii

HYPERNOMAD Documentation, Release latest

HyperNOMAD is a Python package dedicated to the hyperparameter optimization of deep neural networks. The
package contains a blackbox specifically designed for this problematic and provides a link with the NOMAD software
used for the optimization. The blackbox takes as inputs a list of hyperparameters, builds a corresponding deep neural
network in order to train, validate and test it on a specific data set before returning the test error as a mesure of
performance. NOMAD is then used to minimize this error. The following appendix provides an overview of how to
use the HyperNOMAD package.

Installation Guide 1

HYPERNOMAD Documentation, Release latest

2 Installation Guide

CHAPTER 1

Prerequisites

In order to run HyperNOMAD correctly, please make sure to have:

• Python > 3.6

• PyTorch.

• GCC > 3.8

• A compiled version of NOMAD.

Additionally, hypernomad has the following Python requirements:

• Numpy

• Matplotlib

1.1 Check that the requirements are fullfiled

Here are simple tests to check that everything is set correctly before installing HyperNOMAD.

1.1.1 Pytorch

In order to test that Pytorch is correctly installed try the following command

python
>>> import torch

1.1.2 NOMAD

Try running the following command

3

https://pytorch.org
https://www.gerad.ca/nomad/

HYPERNOMAD Documentation, Release latest

nomad -info

For more help on the installation of NOMAD, please refer to the user_guide.

4 Chapter 1. Prerequisites

https://www.gerad.ca/nomad/Downloads/user_guide.pdf

CHAPTER 2

Step by step installation of HyperNOMAD

The installation of HyperNOMAD can start once the package is downloaded and the prerequisites installed. The
package contains a Makefile responsible for builinding the binaries. To start the installation, you need to execute the
following command:

make
building HyperNOMAD ...

To be able to run the example
the HYPERNOMAD_HOME environment variable
must be set to the HyperNOMAD home directory

When the compilation is successful, a message appears asking to set an environment variable ‘HYPER-
NOMAD_HOME’. This can be done by adding a line in the file .profile or .bashrc :

export HYPERNOMAD_HOME=hypernomad_directory

2.1 Check that the installation is successful

The executable hypernomad.exe is located in the bin directory. You can check that the installation is successful by
trying to run the commad

$HYPERNOMAD_HOME/bin/./hypernomad.exe -i

which should return the following informations:

--
HyperNomad - version 1.0

--
Using Nomad version 3.9.0 - www.gerad.ca/nomad

--

(continues on next page)

5

HYPERNOMAD Documentation, Release latest

(continued from previous page)

Run : hypernomad.exe parameters_file
Info : hypernomad.exe -i
Help : hypernomad.exe -h
Version : hypernomad.exe -v
Usage : hypernomad.exe -u
Neighboors : hypernomad.exe -n parameters_file

6 Chapter 2. Step by step installation of HyperNOMAD

CHAPTER 3

Basic usage

HyperNOMAD is a library that aims at optimizing the hyperparameters of a deep neural network for a given applica-
tion. Note that, at this stage, HyperNOMAD is tailored for convolutional networks only.

In order to start an optimization, a few informations must be provided in order to specify the dataset used and op-
tionnally some informations on the search space. This is done in a parameter file which is passed as an argument to
hypernomad.exe, as is shown in the following example:

$HYPERNOMAD_HOME/bin/./hypernomad.exe parameter_file.txt

3.1 Choosing a dataset

The parameter file must contain some mandatory informations such as the name of the data set and the number of
times the blackbox is called, which corresponds to the number of different configurations HyperNOMAD is allowed
to try. This package comes with the data sets that are listed in the table below.

Dataset Training data validation data test data Number of classes
MNIST 40000 10000 10000 10
Fashion MNIST 40000 10000 10000 10
EMNIST 40000 10000 10000 10
KMNIST 40000 10000 10000 10
CIFAR10 40000 10000 10000 10
CIFAR100 40000 10000 10000 100
STL10 4000 1000 8000 10

HyperNOMAD also offers the possibily of using a personnal data set in which case the user is responsible for providing
the necessary informations to the blackbox. The necessary instructions to do so are provided in the Advanced usage
section.

7

HYPERNOMAD Documentation, Release latest

3.2 Specifying the search space

The user can choose to provide additionnal informations on the search space considered. HyperNOMAD allows for
a good flexibility of tuning a convolutional network by considering multiple aspects of a network at once such as the
architecture, the dropout rate, the choice of the optimizer and the hyperparameters related to the optimization aspect
(learning rate, weight decay, momentum, . . .), the batch size, etc. The user can choose to optimize all these aspects or
select a few and fixe the others to certain values. The user can also change the default range of each hyperparameter.

This information is passed through the parameter file by using a specific synthax:

KEYWORD INITIAL_VALUE LOWER_BOUND UPPER_BOUND FIXED/VAR

This table lists all the possible keywords, their interpretation and the default values and ranges for each one

Name Description Default Range
DATASET name of the dataset used no de-

fault
From previous table, or
CUSTOM

NUMBER_OF_CLASSES number of classes of the problem no de-
fault

Only use if dataset is
CUSTOM

MAX_BB_EVALS number of configurations to try no de-
fault

Integer > 1

NUM_CON_LAYERS number of convolutional layers 2 [0, 100]
OUTPUT_CHANNELS number of output channels of the layer 6 [1, 100]
KERNELS size of the kernels applied 5 [1, 20]
STRIDES step of the kernels 1 [1, 3]
PADDINGS size of the padding 0 [0, 2]
DO_POOL weather apply a pooling or not 0 0, 1
NUM_FC_LAYERS number of fully connected layers 2 [0, 500]
SIZE_FC_LAYER size of the fully connected layer 128 [1, 1000]
BATCH_SIZE the batch size 128 [1, 400]
OPTIMIZER_CHOICE from SGD, Adam, Adagrad, RMSProp 3 [1, 4]
OPT_PARAM_1 learning rate 0.1 [0, 1]
OPT_PARAM_2 second parameter of the optimizer 0.9 [0, 1]
OPT_PARAM_3 third parameter of the optimizer 0.005 [0, 1]
OPT_PARAM_4 fourth parameter of the optimizer 0 [0, 1]
DROPOUT_RATE probability of dropping a node 0.5 [0, 0.95]
ACTIVATION_FUNCTION choice from ReLU, Sigmoid or Tanh 1 [1, 3]
REMAIN-
ING_HYPERPARAMETERS

use to fixe or vary those not listed in the
parameter file

VAR FIXED, VAR

3.3 Example of a parameter file

Here is an example of an acceptable parameter file. First, the dataset MNIST is choosen and we specify that Hy-
perNOMAD is allowed to try a maximum of 100 configurations. Then, the number of convolutional layers is fixed
throught the optimization to 5, the two ‘-’ appearing after the ‘5’ mean that the default lower and upper bounds are not
changed. The kernels, number of fully connected layers and activation function are respectively initialized at 3, 6, and
2 (Sigmoid) and the dropout rate is initialized at 0.6 with a new lower bound of 0.3 and upper bound of 0.8 Finally, all
the remaining hyperparameters from Table~ref{tab:keywords} that are not explicitly mentioned in this file are fixed to
their default values during the optimization.

8 Chapter 3. Basic usage

HYPERNOMAD Documentation, Release latest

Mandatory information
DATASET MNIST
MAX_BB_EVAL 100

Optional information
NUM_CON_LAYERS 5 - - FIXED
KERNELS 3
NUM_FC_LAYERS 6
ACTIVATION_FUNCTION 2
DROPOUT_RATE 0.6 0.3 0.8
REMAINING_HPS FIXED

This parameter file is provided in the directory ‘examples’ from where we can execute the following command in
order to run HyperNOMAD on this search space

$HYPERNOMAD_HOME/bin/./hypernomad.exe $HYPERNOMAD_HOME/examples/mnist_first_example.
→˓txt

3.3. Example of a parameter file 9

HYPERNOMAD Documentation, Release latest

10 Chapter 3. Basic usage

CHAPTER 4

Using X0 as a starting point

The main advantage of choosing this method of initialization rather than the previous one, which relies on using
keywords, is that defining an X0 allows for more flexiblity since one can choose a value for each parameter of each
layer. For example, using a keyword such as ‘KERNELS’ means that all the kernels applied on every convolutional
layer will have the same initial value. Whereas an X0 allows to initialize each kernel individually.

The order and meaning of the variables in X0 is hardcoded in HyperNOMAD. Let’s use the following parameter file
as an example :

DATASET MNIST
MAX_BB_EVAL 100

HYPER_DISPLAY 3

[CONVOLUTION BLOCK] [FULLY CONNECTED BLOCK]
→˓[BATCH] [OPTIMIZER BLOCK] [DROPOUT][ACTIVATION]
X0 (2 6 5 1 0 1 16 5 1 0 1 2 128 84 128
→˓ 3 0.1 0.9 0.0005 0 0.2 1)
#LOWER_BOUND (1 1 1 1 0 0 1 1 1 0 0 0 1 1 1
→˓ 1 0 0 0 0 0 1)
#UPPER_BOUND (100 1000 20 3 2 1 1000 20 3 2 1 500 1000 1000 400
→˓ 4 1 1 1 1 1 3)

DROPOUT_RATE 0.5 - - FIXED
KERNELS 10 - - FIXED
REMAINING_HYPERPARAMETERS VAR

4.1 Analysis of the example

First, ‘HYPER_DISPLAY’ allows set the level of details on the steps of HyperNOMAD. The default value is 1, and
the maximum is 3. Then, X0 is presented as a list of parameters that are respectively categorised into the convolutional
block, the fully connected block, the batch size, the optimizer block, the dropout rate and the activate function.

11

HYPERNOMAD Documentation, Release latest

The blocks for the batch size, dropout rate and activate function contain each one single value which that of the
corresponding hyperparameter.

The first variable of the convolutional block indicates the number of convolutional layers : 2 in this example. Each
convolutional layer has 5 associated variables : (number of output channeles, kernel, stride, padding, do pooling).
Therefor, the first convolutional layer has 6 output channels, a (5,5) kernel, a stride of 1, no padding and performs a
pooling afterwards. The same goes for the second layer.

The first variable of the fully connected block corresponds to the number of fully connected layers. The following
variables indicate the size of each fully connected layer.

The first variable of the optimizer block indicates which optimizer is used, here is it Adagrad. The optimizer block
always has 4 associated variables whose meaning change according to the optimizer chosen. For example in the case
of SGD, the first variable is the learning rate followed by the momentum, the dampening and the weight decay.

4.2 Advantage of using X0

In addition to being able to initialize each hyperparameter on it’s own, we can also define specific lower and upper
bounds for each single hyperparameter as is shown in the previous example.

Note: Note that X0 takes precedence over the other keywords, therefore the tags KERNELS and DROPOUT_RATE
will not affect this initial starting point.

12 Chapter 4. Using X0 as a starting point

CHAPTER 5

Using a personnal dataset

In addition to the datasets embedded in HyperNOMAD, the user can choose to use a personnal dataset by specifying
the following informations in the parameter file:

DATASET CUSTOM
NUMBER_OF_CLASSES 20

When using a CUSTOM dataset, it is mandatory to provide HyperNOMAD with the number of classes. The user is
also responsible of plugging the 3 datasets (training, validation and testing) into the blackbox. In the file blackbox.py,
the lines 80 to 84 must be completed with the adequate information.

Load the data
print('> Preparing the data..')

if dataset is not 'CUSTOM':
dataloader = DataHandler(dataset, batch_size)
image_size, number_classes = dataloader.get_info_data
trainloader, validloader, testloader = dataloader.get_loaders()

else:
Add here the adequate information
image_size = None
number_classes = None
trainloader = None
validloader = None
testloader = None

The image size is a tuple of the form : (number_input_channels, length_image, width_image). In the case of MNIST,
the image size is (1, 28, 28).

The trainload, validloader and testloader must be instances of ‘torch.utils.data.dataloader.DataLoader’.

13

	Prerequisites
	Step by step installation of HyperNOMAD
	Basic usage
	Using X0 as a starting point
	Using a personnal dataset

